V1 (@2025)

Digital Circuits

Lecture 4:

Karnaugh Map

By: M.Razeghizadeh

Start now!

Contents of This Slide

- Boolean Function Minimization
- The Karnaugh Map (K-Map)
- Two, Three, and Four-Variable K-Maps
- Prime and Essential Prime Implicants
- Minimal Sum-of-Products and Product-of-Sums
- Don't Cares
- Five and Six-Variable K-Maps
- Multiple Outputs

Boolean Function Minimization

- Complexity of a Boolean function is directly related to the complexity of the algebraic expression
- The truth table of a function is unique
- However, the algebraic expression is not unique
- Boolean function can be simplified by algebraic manipulation
- However, algebraic manipulation depends on experience
- Algebraic manipulation does not guarantee that the simplified Boolean expression is minimal

Example: Sum of Minterms

Truth Table

x y z	f	Minterm
000	0	
0 0 1	1	$m_1 = x'y'z$
0 1 0	1	$m_2 = x'yz'$
0 1 1	1	$m_3 = x'yz$
100	0	
1 0 1	1	$m_5 = xy'z$
1 1 0	0	
1 1 1	1	$m_7 = xyz$

Focus on the '1' entries

$$f = m_1 + m_2 + m_3 + m_5 + m_7$$

$$f = \sum (1, 2, 3, 5, 7)$$

$$f = x'y'z + x'yz' + x'yz + xyz$$

Sum-of-Minterms has 15 literals → Can be simplified

Algebraic Manipulation

Simplify: f = x'y'z + x'yz' + x'yz + xy'z + xyz (15 literals)

$$f = x'y'z + x'yz' + x'yz + xy'z + xyz$$

$$f = x'y'z + x'yz + x'yz' + xy'z + xyz$$

$$f = x'z(y' + y) + x'yz' + xz(y' + y)$$

$$f = x'z + x'yz' + xz$$

$$f = x'z + xz + x'yz'$$

$$f = (x' + x)z + x'yz'$$

$$f = z + x'yz'$$

$$f = (z + x'y)(z + z')$$

$$f = z + x'y$$

(Sum-of-Minterms)

Reorder

Distributive · over +

Simplify (7 literals)

Reorder

Distributive • over +

Simplify (4 literals)

Distributive + over •

Simplify (3 literals)

Drawback of Algebraic Manipulation

- No clear steps in the manipulation process
 - Not clear which terms should be grouped together
 - Not clear which property of Boolean algebra should be used next
- Does not always guarantee a minimal expression
 - Simplified expression may or may not be minimal
 - Different steps might lead to different non-minimal expressions
- However, the goal is to minimize a Boolean function
- Minimize the **number of literals** in the Boolean expression
 - The **literal count** is a good measure of the **cost** of logic implementation
 - Proportional to the number of transistors in the circuit implementation

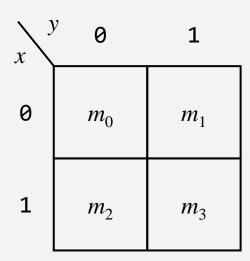
Karnaugh Map

- Called also K-map for short
- The Karnaugh map is a diagram made up of squares
- It is a reorganized version of the truth table
- Each square in the Karnaugh map represents a minterm
- Adjacent squares differ in the value of one variable
- Simplified expressions can be derived from the Karnaugh map
 - By recognizing patterns of squares
- Simplified sum-of-products expression (AND-OR circuits)
- Simplified product-of-sums expression (OR-AND circuits)

Two-Variable Karnaugh Map

- Minterms m_0 and m_1 are adjacent (also, m_2 and m_3)
 - They differ in the value of variable y
- Minterms m_0 and m_2 are adjacent (also, m_1 and m_3)
 - They differ in the value of variable x

Two-variable K-map



x^{y}	['] 0	1
0	<i>x' y'</i>	<i>x' y</i>
1	x y'	ху

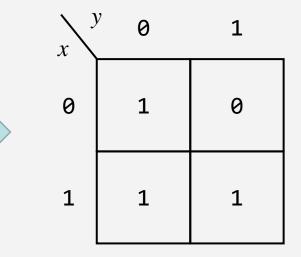
From a Truth Table to Karnaugh Map

- Given a truth table, construct the corresponding K-map
- Copy the function values from the truth table into the K-map
- Make sure to copy each value into the proper K-map square

_			_	_		
-		.41		Г		
		ITI	4	17	rni	
	·			u		•

ху	f
0 0	1
0 1	0
1 0	1
1 1	1

K-map



K-Map Function Minimization

Two adjacent cells containing 1's can be combined

•
$$f = m_0 + m_2 + m_3$$

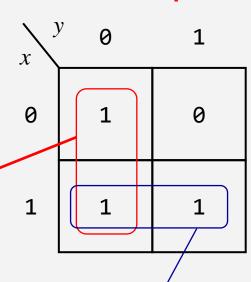
• f = x'y' + xy' + xy (6 literals)

$$m_0 + m_2 = x'y' + xy' = (x' + x)y' = y'$$

$$m_2 + m_3 = xy' + xy = x(y' + y) = x$$

• Therefore, f can be simplified as: f = x + y'

K-map



(2 literals)

● ● Three-Variable Karnaugh Map

- Have eight squares (for the 8 minterms), numbered 0 to 7
- The last two columns are not in numeric order: 11, 10
 - Remember the numbering of the squares in the K-map
- Each square is adjacent to three other squares
- Minterms in adjacent squares can always be combined
 - This is the key idea that makes the K-map work
- Labeling of rows and columns is also useful

yz	00	01	11	10
0	m_0	m_1	m_3	m_2
1	m_4	m_5	m_7	m_6

χ	yz	00 y	01) 11	7 10
<i>x</i> ′	0	x'y'z'	x'y'z	x'yz	x'yz'
x	1	xy'z'	xy'z	xyz	xyz'
		$oldsymbol{z}'$	2		\mathbf{z}'

Simplifying a Three-Variable Function

Simplify the Boolean function: $f(x, y, z) = \sum (3, 4, 5, 7)$

$$f = x'yz + xy'z' + xy'z + xyz$$
 (12 literals)

- Mark **11** all the K-map squares that represent function f

2. Find possible adjacent squares	x	00	01	11	10
x'yz + xyz = (x' + x)yz = yz	x ′ 0	0	0	1	0
xy'z' + xy'z = xy'(z'+z) = xy'	<i>x</i> 1	1	1	1	0
Therefore $f = vv' + vz$ (4 literals)	·	z'	7	7	z ′

Therefore, f = xy + yz (4 literals)

Simplifying a Three-Variable Function (2)

Here is a second example: $f(x, y, z) = \sum (3, 4, 6, 7)$

$$f = x'yz + xy'z' + xyz' + xyz$$
 (12 literals)

Learn the locations of the 8 indices based on the variable order

$$x'yz + xyz = (x' + x)yz = yz$$

Corner squares can be combined

$$xy'z' + xyz' = xz'(y' + y) = xz'$$

Therefore, f = xz' + yz (4 literals)

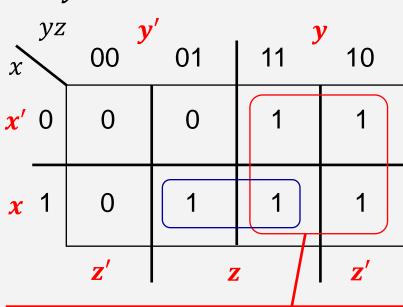
χ	yz	00 y	01	11	1 0
<i>x</i> ′	0	0	0	1	0
x	1	1	0	1	1
		z'	Z		\mathbf{z}'

Combining Squares on a 3-Variable K-Map

- By combining squares, we reduce number of literals in a product term, thereby reducing the cost
- On a 3-variable K-Map:
 - One square represents a minterm with 3 variables
 - Two adjacent squares represent a term with 2 variables
 - Four adjacent squares represent a term with 1 variable
 - Eight adjacent square is the constant '1' (no variables)

Example of Combining Squares

- Consider the Boolean function: $f(x, y, z) = \sum (2, 3, 5, 6, 7)$
- f = x'yz' + x'yz + xy'z + xyz' + xyz
- ❖ The four minterms that form the 2×2 red square are reduced to the term y
- The two minterms that form the blue rectangle are reduced to the term xz
- ❖ Therefore: f = y + xz



$$x'yz + x'yz' + xyz + xyz'$$
= $x'y(z + z') + xy(z + z')$
= $x'y + xy = (x' + x)y = y$

Minimal Sum-of-Products Expression

Consider the function: $f(x, y, z) = \sum (0, 1, 2, 4, 6, 7)$

Find a minimal sum-of-products (SOP) expression

Solution:

Red block: term = z'

Green block: term = x'y'

Blue block: term = xy

yz x	00 y	, 01) 11	y 10
x ' 0	1	1	0	1
<u>x</u> 1	1	0	1	1
	$oldsymbol{z}'$	Z		$oldsymbol{z}'$

Minimal sum-of-products: f = z' + x'y' + xy (5 literals)

Four-Variable Karnaugh Map

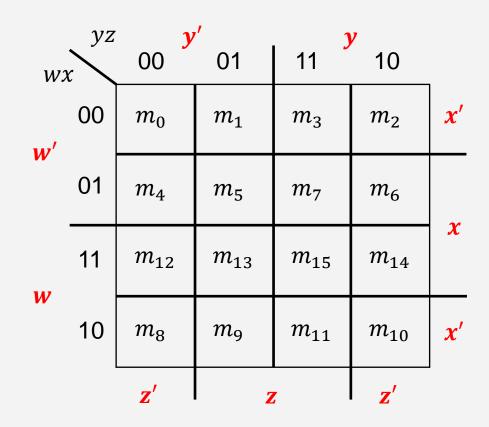
4 variables → 16 squares

Remember the numbering of the squares in the K-map

Each square is adjacent to four other squares

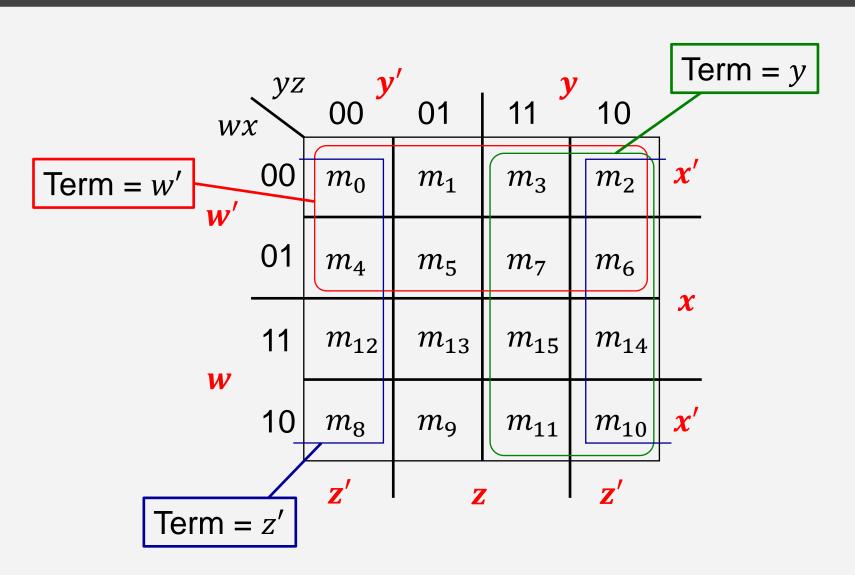
$m_{0+} = w'x'y'z'$	$m_{10} = w'x'y'z$
$m_{20} = w'x'yz'$	$m_{30} = w'x'yz$
$m_{40} = w'x \ y'z'$	$m_{50} = w'x y'z$
$m_{60} = w'x y z'$	$m_{70} = w'x y z$
$m_{80} = w x' y' z'$	$m_{90} = w x' y' z$
$m_{10} = w x' y z'$	$m_{11} = w x' y z$
$m_{12} = w x y'z'$	$m_{13} = w x y'z$
$m_{14} = w x y z'$	$m_{15} = w x y z$

Notice the order of Rows 11 and 10 and the order of columns 11 and 10

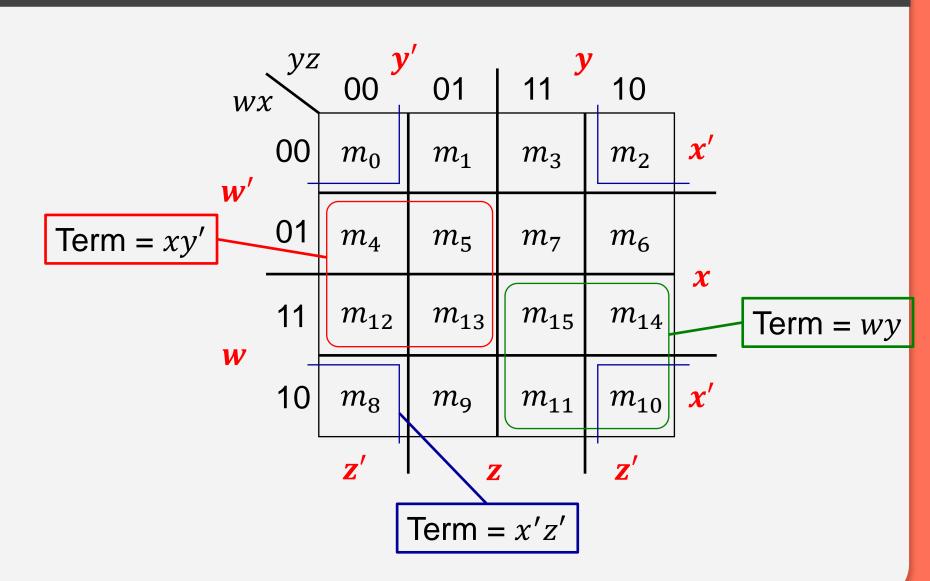


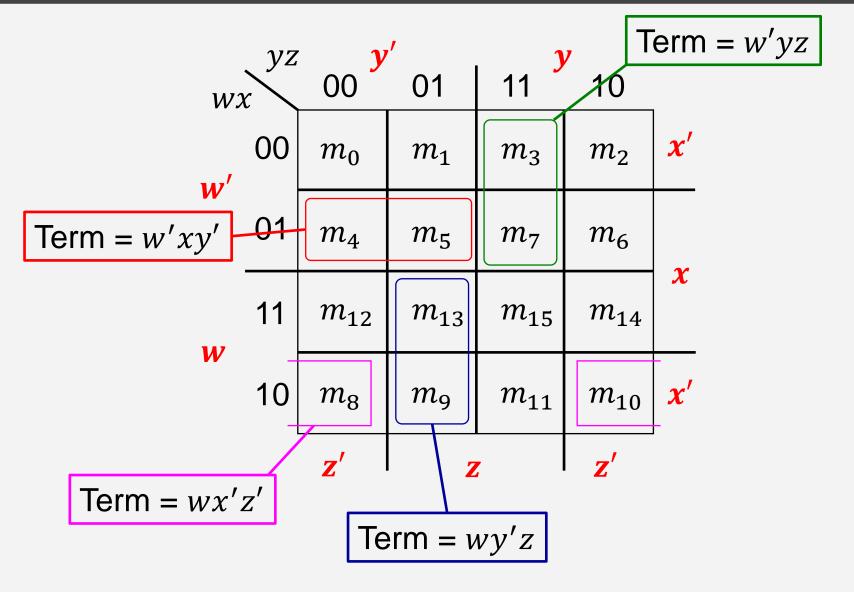
Combining Squares on a 4-Variable K-Map

- On a 4-variable K-Map:
 - One square represents a minterm with 4 variables
 - Two adjacent squares represent a term with 3 variables
 - Four adjacent squares represent a term with 2 variables
 - Eight adjacent squares represent a term with 1 variable
 - Combining all 16 squares is the constant '1' (no variables)



Combining Four Squares





Simplifying a 4-Variable Function

Term = w'z'

Given $f(w, x, y, z) = \sum (0, 2, 4, 5, 6, 7, 8, 12)$

wx

w'

Draw the K-map for function f

Minimize *f* as sum-of-products

Solution:

$$f = w'x + y'z' + w'z'$$

Term = w'x

Term = y	y'z'
------------	------

yz	00	'' 01] 11	10	
00	1	0	0	1	<i>x'</i>
01	1	1	1	1	
11	1	0	0	0	x
10	1	0	0	0	<i>x</i> ′
	\mathbf{z}'	7		$oldsymbol{z}'$	

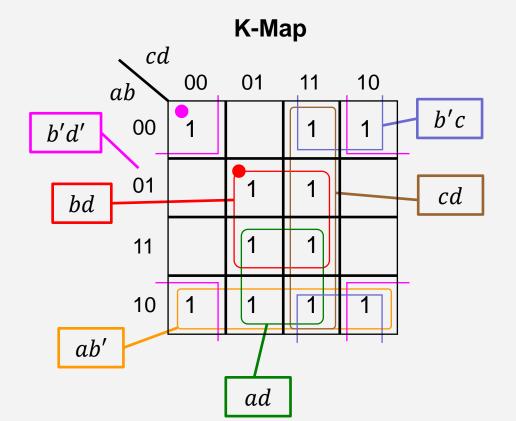
Prime Implicants

- Prime Implicant: a product term obtained by combining the maximum number of adjacent squares in the K-map
- The number of combined squares must be a power of 2
- Essential Prime Implicant: is a prime implicant that covers at least one minterm not covered by the other prime implicants
- The prime implicants and essential prime implicants can be determined by inspecting the K-map

Example of Prime Implicants

Find all the prime implicants and essential prime implicants for:

$$f(a,b,c,d) = \sum (0,2,3,5,7,8,9,10,11,13,15)$$



Six Prime Implicants

bd, b'd', ab', ad, cd, b'c

Only Two Prime Implicants are essential

bd and b'd'

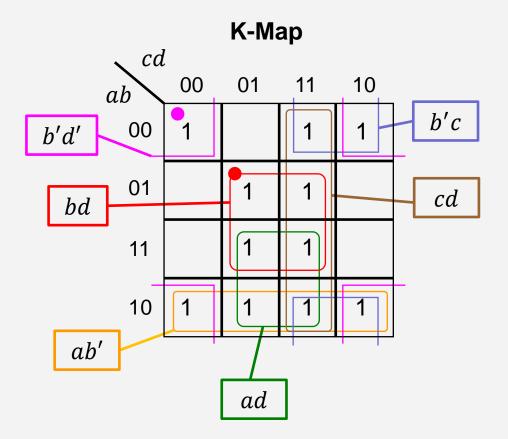
Simplification Procedure Using the K-Map

- 1. Find all the essential prime implicants
 - Covering maximum number (power of 2) of 1's in the K-map
 - Mark the minterm(s) that make the prime implicants essential
- 2. Add prime implicants to cover the function
 - Choose a minimal subset of prime implicants that cover all remaining 1's
 - Make sure to cover all 1's not covered by the essential prime implicants
 - Minimize the overlap among the additional prime implicants
- Sometimes, a function has multiple simplified expressions
 - You may be asked to list all the simplified sum-of-product expressions

Obtaining All Minimal SOP Expressions

Consider again: $f(a, b, c, d) = \sum (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

Obtain all minimal sum-of-products (SOP) expressions



Two essential Prime

Implicants: bd and b'd'

Four possible solutions:

$$f = bd + b'd' + cd + ad$$

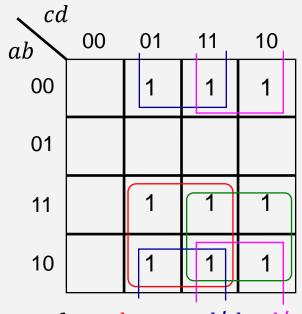
$$f = bd + b'd' + cd + ab'$$

$$f = bd + b'd' + b'c + ab'$$

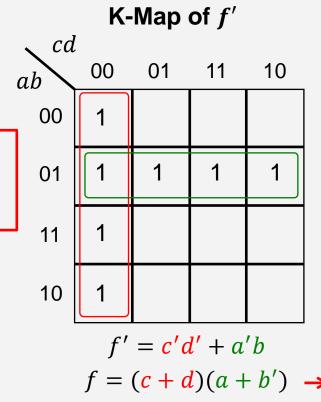
$$f = bd + b'd' + b'c + ad$$

Product-of-Sums (POS) Simplification

- All previous examples were expressed in Sum-of-Products form
- With a minor modification, the Product-of-Sums can be obtained
- Example: $f(a, b, c, d) = \sum (1, 2, 3, 9, 10, 11, 13, 14, 15)$



f = ad + ac + b'd + b'cMinimal Sum-of-Products = 8 literals All prime implicants are essential



Product-of-Sums Simplification Procedure

- 1. Draw the K-map for the function f
 - Obtain a minimal Sum-of-Products (SOP) expression for f
- 2. Draw the K-map for f', replacing the 0's of f with 1's in f'
- 3. Obtain a minimal Sum-of-Products (SOP) expression for f'
- **4.** Use DeMorgan's theorem to obtain f = (f')'
 - \blacksquare The result is a minimal Product-of-Sums (POS) expression for f
- 5. Compare the cost of the minimal SOP and POS expressions
 - Count the number of literals to find which expression is minimal

Don't Cares

- Sometimes, a function table may contain entries for which:
 - The input values of the variables will never occur, or
 - The output value of the function is never used
- In this case, the output value of the function is not defined
- The output value of the function is called a don't care
- A don't care is an X value that appears in the function table
- The X value can be later chosen to be 0 or 1
 - To minimize the function implementation

Example of a Function with Don't Cares

- Consider a function f defined over BCD inputs
- The function input is a BCD digit from 0 to 9
- The function output is 0 if the BCD input is 0 to 4
- The function output is 1 if the BCD input is 5 to 9
- The function output is X (don't care) if the input is
 10 to 15 (not BCD)
- $f = \sum_{m} (5, 6, 7, 8, 9) + \sum_{d} (10, 11, 12, 13, 14, 15)$ Minterms Don't Cares

а	b	С	d	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X

X

Truth Table

Minimizing Functions with Don't Cares

Consider: $f = \sum_{m} (5, 6, 7, 8, 9) + \sum_{d} (10, 11, 12, 13, 14, 15)$

If the don't cares were treated as 0's we get:

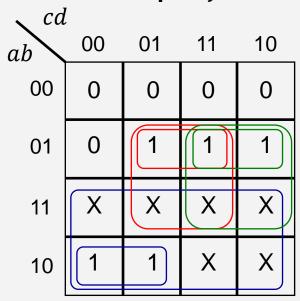
$$f = a'bd + a'bc + ab'c'$$
 (9 literals)

If the don't cares were treated as 1's we get:

$$f = a + bd + bc (5 literals)$$

The don't care values can be selected to be either 0 or 1, to produce a minimal expression

K-Map of f



Simplification Procedure with Don't Cares

- 1. Find all the essential prime implicants
 - Covering maximum number (power of 2) of 1's and X's (don't cares)
 - Mark the 1's that make the prime implicants essential
- 2. Add prime implicants to cover the function
 - Choose a minimal subset of prime implicants that cover all remaining 1's
 - Make sure to cover all 1's not covered by the essential prime implicants
 - Minimize the overlap among the additional prime implicants
 - You need not cover all the don't cares (some can remain uncovered)
- Sometimes, a function has multiple simplified expressions

Minimizing Functions with Don't Cares (2)

Simplify: $g = \sum_{m} (1, 3, 7, 11, 15) + \sum_{d} (0, 2, 5)$

Solution 1: g = cd + a'b'

(4 literals)

Solution 2: g = cd + a'd

(4 literals)

Prime Implicant *cd* is essential

K-Map of g

cd					
ab	00	01	11	10	
00	X	1	1	X	
01	0	Χ	1	0	
11	0	0	1	0	
10	0	0	1	0	

K-Map of g

c d	1	•	0	
ab	00	01	11	10
00	X	1	1	X
01	0	X	1	0
11	0	0	1	0
10	0	0	1	0

Not all don't cares need be covered

Minimal Product-of-Sums with Don't Cares

Simplify:
$$g = \sum_{m} (1, 3, 7, 11, 15) + \sum_{d} (0, 2, 5)$$

Obtain a product-of-sums minimal expression

Solution:
$$g' = \sum_{m} (4, 6, 8, 9, 10, 12, 13, 14) + \sum_{d} (0, 2, 5)$$

Minimal
$$g' = d' + ac'$$

(3 literals)

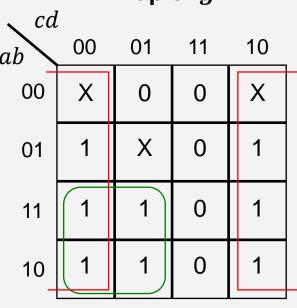
Minimal product-of-sums:

$$g = d(a' + c)$$

(3 literals)

The minimal sum-of-products expression for g had 4 literals

K-Map of g'



- Consists of $2^5 = 32$ squares, numbered 0 to 31
 - Remember the numbering of squares in the K-map
- Can be visualized as two layers of 16 squares each
- Top layer contains the squares of the first 16 minterms (a = 0)
- Bottom layer contains the squares of the last 16 minterms (a = 1)

de	a = 0			
bc	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m_{12}	m_{13}	m_{15}	m_{14}
10	m_8	m_9	m_{11}	m_{10}

de	a = 1			
bc \	00	01	11	10
00	m_{16}	m_{17}	m_{19}	m_{18}
01	m_{20}	m_{21}	m_{23}	m_{22}
11	m_{28}	m_{29}	m_{31}	m_{30}
10	m_{24}	m_{25}	m_{27}	m_{26}

Each square is adjacent to

- **5** other squares:
- 4 in the same layer and
- 1 in the other layer:

 m_0 is adjacent to m_{16} m_1 is adjacent to m_{17} m_4 is adjacent to m_{20} ...

Example of a Five-Variable K-Map

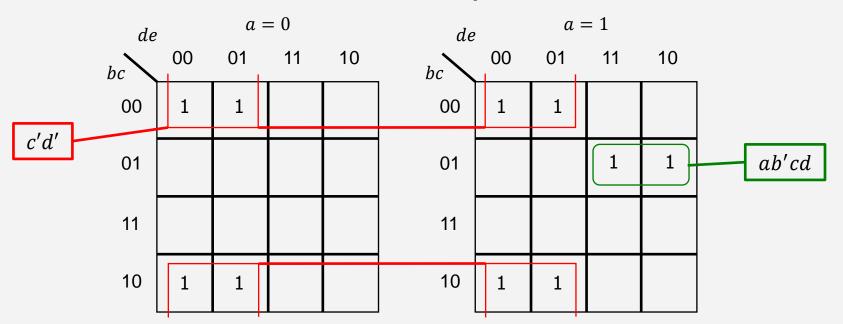
Given: $f(a, b, c, d, e) = \sum (0, 1, 8, 9, 16, 17, 22, 23, 24, 25)$

Draw the 5-Variable K-Map

Obtain a minimal Sum-of-Products expression for *f*

Solution: f = c'd' + ab'cd (6 literals)

5-Variable K-Map



Five-Variable K-Map with Don't Cares

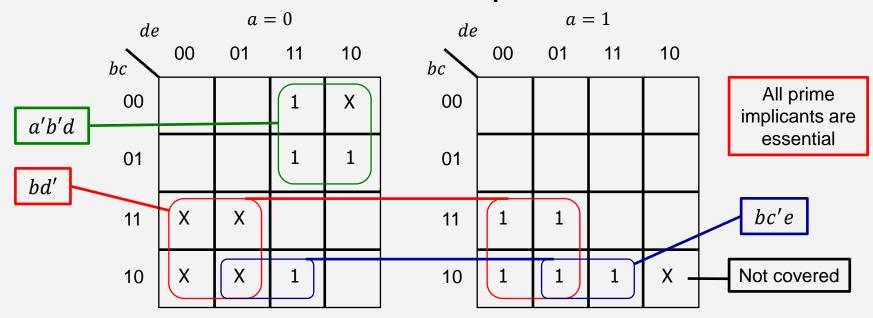
$$g(a, b, c, d, e) = \sum_{m} (3, 6, 7, 11, 24, 25, 27, 28, 29) + \sum_{d} (2, 8, 9, 12, 13, 26)$$

Draw the 5-Variable K-Map

Obtain a minimal Sum-of-Products expression for g

Solution: g = bd' + a'b'd + bc'e (8 literals)

5-Variable K-Map



Six-Variable Karnaugh Map

- Consists of $2^6 = 64$ squares, numbered 0 to 63
- Can be visualized as four layers of 16 squares each
 - Four layers: ab = 00, 01, 11, 10 (Notice that layer 11 comes before 10)
- Each square is adjacent to 6 other squares:
 - 4 squares in the same layer and 2 squares in the above and below layers

ef $ab = 00$				ab = 01				ab = 11					ab = 10					
cd	00	01	11	10	00	01	11	10		00	01	11	10	_	00	01	11	10
00	m_0	m_1	m_3	m_2	m_{16}	m_{17}	$m_{19}^{}$	m_{18}		m_{48}	m_{49}	m_{51}	m_{50}	n	n ₃₂	m_{33}	m_{35}	m_{34}
01	m_4	m_5	m_7	m_6	m_{20}	m_{21}	m_{23}	m_{22}		m_{52}	m_{53}	m_{55}	m_{54}	n	n ₃₆	m_{37}	m_{39}	m_{38}
11	m_{12}	m_{13}	m_{15}	m_{14}	m_{28}	m_{29}	m_{31}	m_{30}		m_{60}	m_{61}	m_{63}	m_{62}	n	n_{44}	m_{45}	m_{47}	m_{46}
10	m_8	m_9	m_{11}	m_{10}	m_{24}	m_{25}	m_{27}	m_{26}		m ₅₆	m_{57}	m_{59}	m_{58}	r	n_{40}	m_{41}	m_{43}	m_{42}

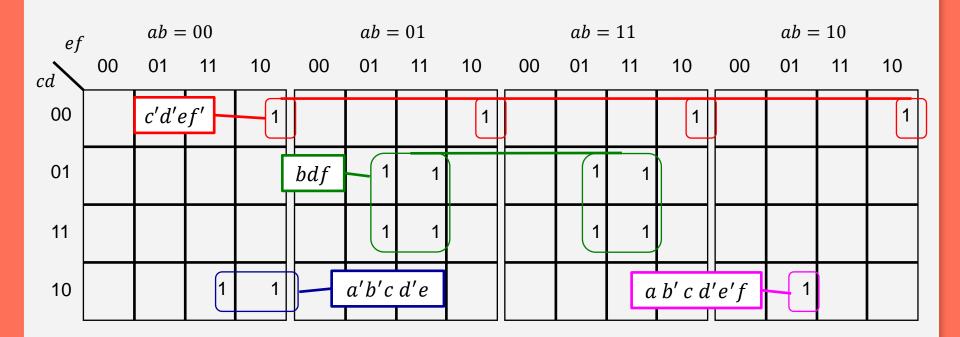
Example of a Six-Variable K-Map

 $h(a, b, c, d, e, f) = \sum (2, 10, 11, 18, 21, 23, 29, 31, 34, 41, 50, 53, 55, 61, 63)$

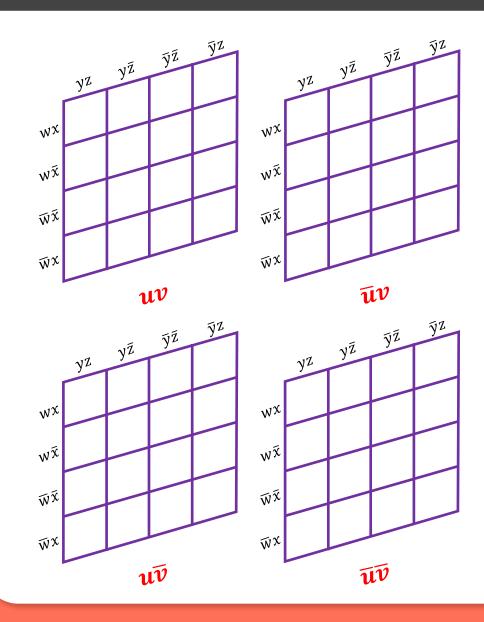
Draw the 6-Variable K-Map

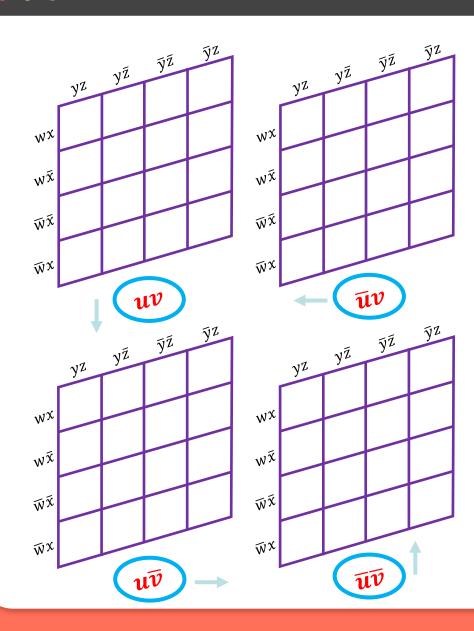
Obtain a minimal Sum-of-Products expression for h

Solution: h = c'd'ef' + b d f + a'b'c d'e + a b' c d'e'f (18 literals)



Six-Variable Karnaugh Map

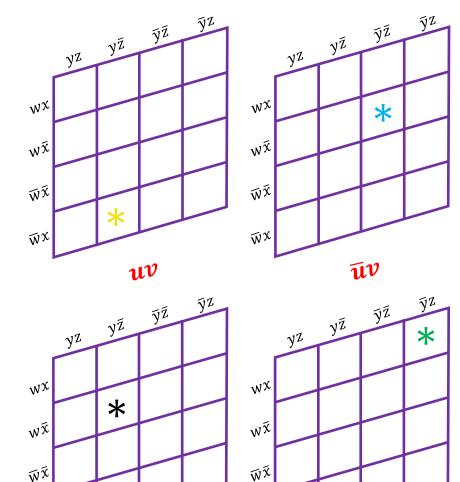




 \widehat{w}^{χ}

นข

Six-Variable Karnaugh Map



 \widehat{w}^{χ}

ūv

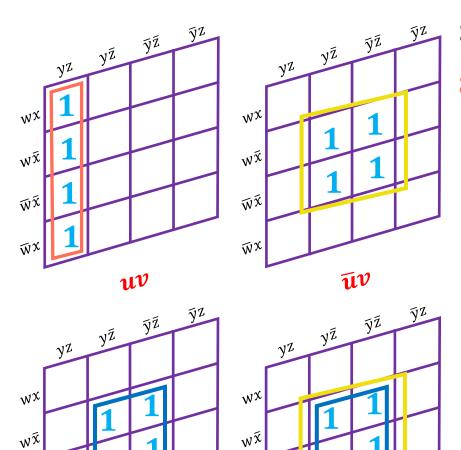
Identify the Stars?

- * $\overline{u}v\overline{w}\overline{x}y\overline{z}$
- * $uv w \overline{x} y \overline{z}$
- * $u\overline{v} \overline{w} \overline{x} \overline{y} \overline{z}$
 - $\overline{u} \overline{v} w x \overline{y} z$

ẃχ

 \widehat{w}^{χ}

Six-Variable Karnaugh Map



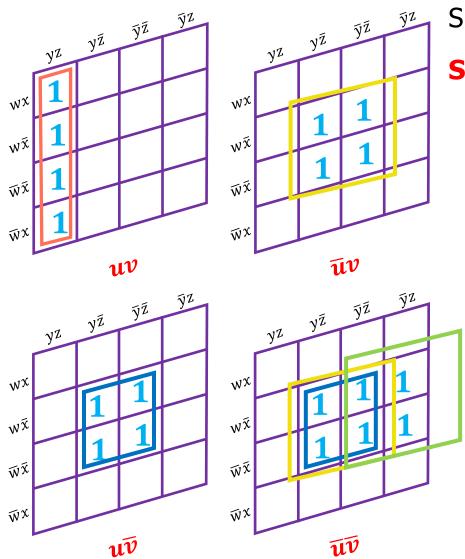
ẃχ

 \widehat{w}^{χ}

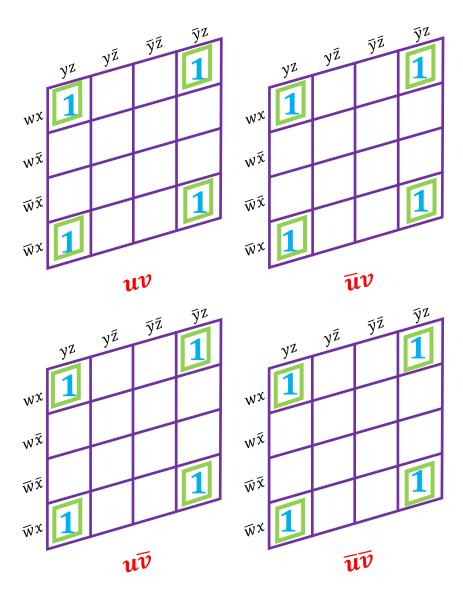
uv

Simplify the mapped expression?





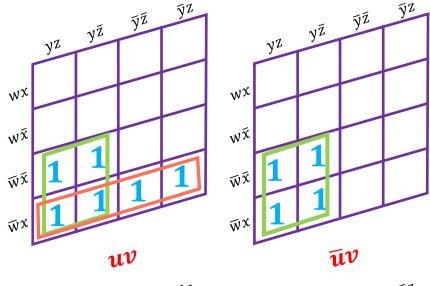
Six-Variable Karnaugh Map



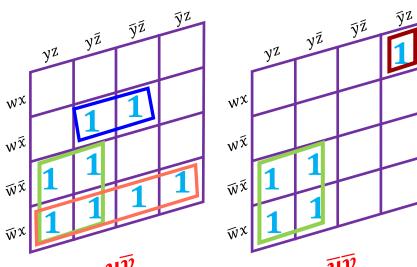
Simplify the mapped expression?

Solution:

XZ

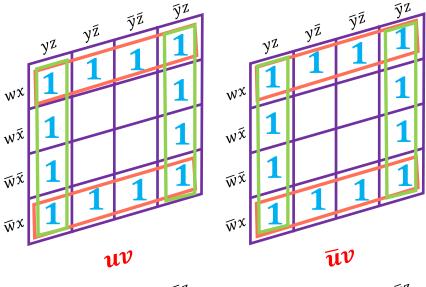


$$\overline{w}y + u\overline{w}x + u\overline{v}w\,\overline{x}\,\overline{z}$$
$$+ \overline{u}\,\overline{v}\,wx\overline{y}\,z$$

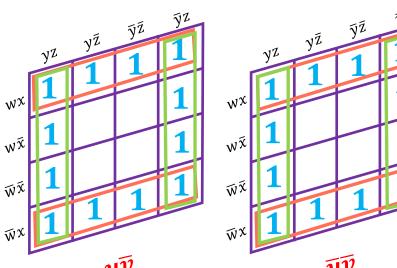


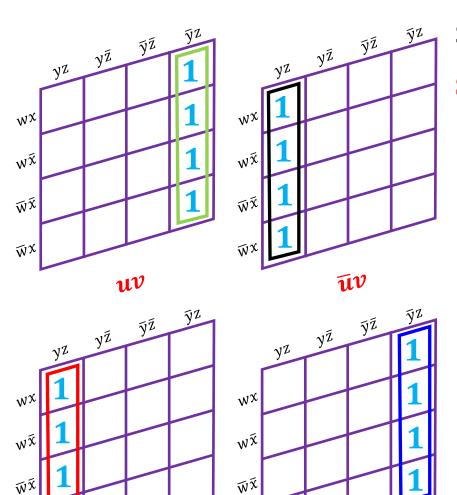


$$\overline{w} + \overline{u} v \overline{x}$$



$$x + z$$





 \widehat{w}^{χ}

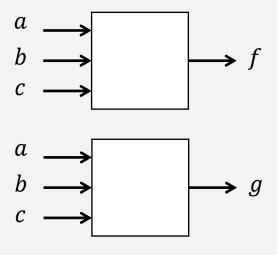
ūv

Simplify the mapped expression?

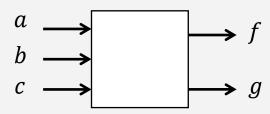
$$\overline{u}vyz + uv\overline{y}z + \overline{u}\overline{v}\overline{y}z + \overline{u}\overline{v}\overline{y}z$$

Multiple Outputs

- Suppose we have two functions: f(a,b,c) and g(a,b,c)
- Same inputs: a, b, c, but two outputs: f and g
- We can minimize each function separately, or
- Minimize f and g as one circuit with two outputs
- The idea is to share terms (gates) among f and g



Two separate circuits



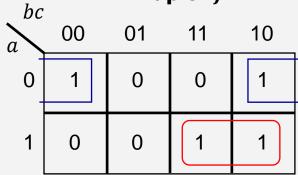
One circuit with Two Outputs

Multiple Outputs: Example 1

Given: $f(a, b, c) = \sum (0, 2, 6, 7)$ and $g(a, b, c) = \sum (1, 3, 6, 7)$

Minimize each function separately

Minimize both functions as one circuit

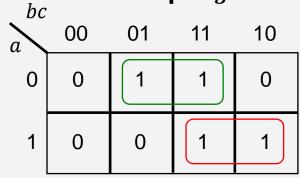


$$f = a'c' + ab$$

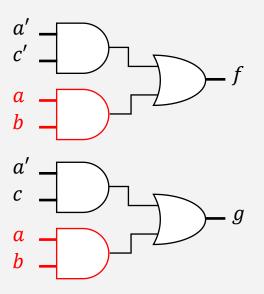
Common

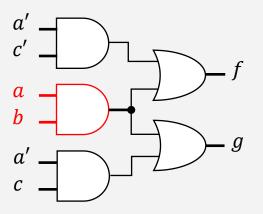
Term = ab

K-Map of g



g = a'c + ab





One circuit with two Outputs

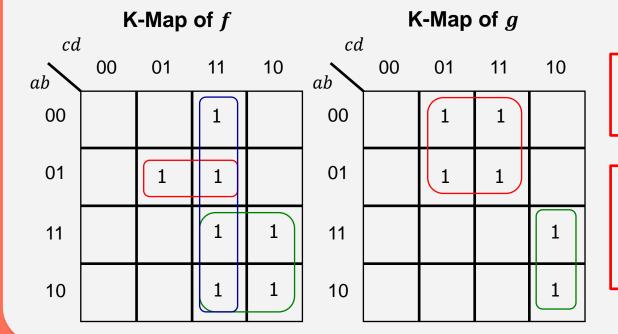
One circuit per function

$$f(a,b,c,d) = \sum (3,5,7,10,11,14,15), g(a,b,c,d) = \sum (1,3,5,7,10,14)$$

Draw the K-map and write minimal SOP expressions of f and g

$$f = a'bd + ac + cd g = a'd + acd'$$

Extract the common terms of f and g



Common Terms $T_1 = a'd \text{ and } T_2 = ac$

Minimal
$$f$$
 and g

$$f = T_1b + T_2 + cd$$

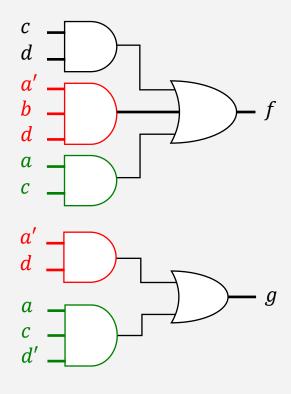
$$g = T_1 + T_2d'$$

Common Terms A Shared Gates

Minimal f = a'bd + ac + cd Minimal g = a'd + acd'

Let $T_1 = a'd$ and $T_2 = ac$ (shared by f and g)

 $Minimal f = T_1b + T_2 + cd,$



NO Shared Gates



Minimal $g = T_1 + T_2 d'$

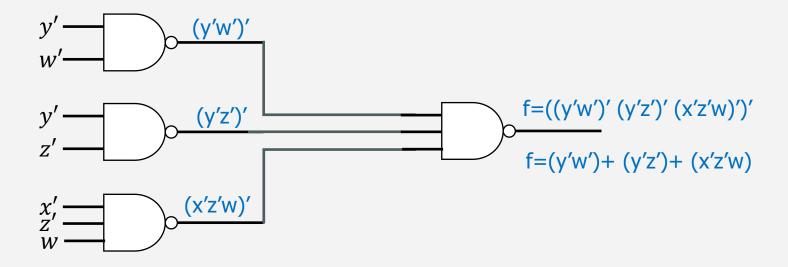
One Circuit
Two Shared Gates

Due to the simplicity of manufacturing NAND and NOR gates compared to other logic gates, they are more commonly used in digital circuits.

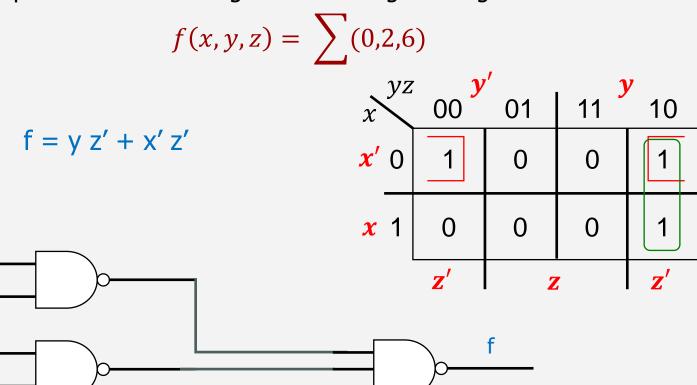
- Rule for Implementing a Function Using NAND Gates (Two-Level Implementation):
 - 1. The function must be simplified and converted into Sum of Products (SOP) form.
 - 2. For each product term that includes at least two variables, draw a NAND gate. The variables in each term are connected to the inputs of the NAND gate. These gates form the first level.
 - 3. In the second level, draw another NAND gate whose inputs are the outputs of the first-level NAND gates.
 - 4. A product term consisting of only one variable in the first level requires an inverter (a single-input NAND gate).

Example:

$$f(x,y,w,z) = y'w' + y'z' + x'z'w$$

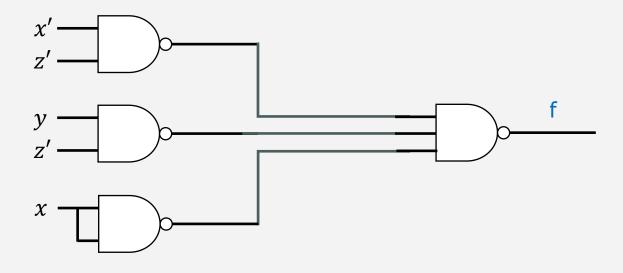


Example: Implement the following function using NAND gates.



Example: Implement the following function using NAND gates.

$$f = y z' + x' z' + x$$



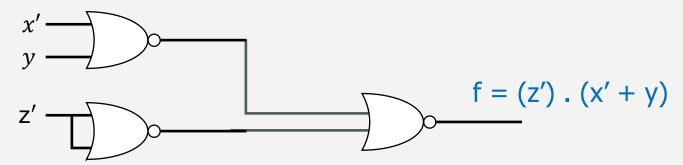
- Rule for Implementing a Function Using NOR Gates (Two-Level Implementation):
 - The function must be simplified and converted into Product of Sums (SOP) form.
 - 2. For each product term that includes at least two variables, draw a NOR gate. The variables in each term are connected to the inputs of the NOR gate. These gates form the first level.
 - 3. In the second level, draw another NOR gate whose inputs are the outputs of the first-level NAND gates.
 - 4. A product term consisting of only one variable in the first level requires an inverter (a single-input NOR gate).

Example: Implement the following function using NOR gates.

$$f(x, y, z) = \sum (0,2,6)$$

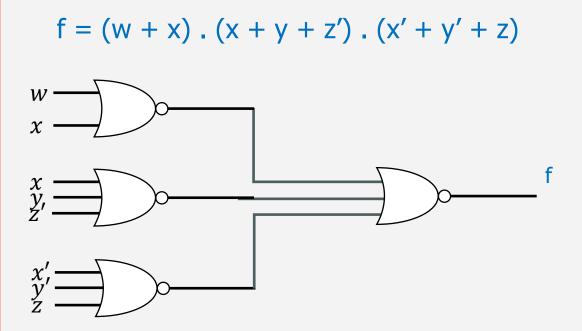
$$f = (z') \cdot (x' + y)$$

_)	VZ		, 04	y 10			
x	\	00	01	11	10		
<i>x</i> ′ (О	1	0	0	1		
\boldsymbol{x}	1	0	0	0	1		
		\mathbf{z}'	Z	z'			



Example: Simplify the following function using the POS method.

$$f(w, x, y, z) = \prod (0, 1, 2, 3, 6, 9, 14)$$



K-Map of f

\sqrt{yz}				
wx	00	01	11	10
00	0	0	0	0
01	1	1	1	0
11	1	1	1	0
10	1	0	1	1

razeghizade@gmail.com

Razeghizade.pudica.ir

CREADITS: This presentation was created by M.Razeghizadeh
Please keep this slide for attribution